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Abstract

Modeling relation paths has offered sig-
nificant gains in embedding models for
knowledge base (KB) completion. How-
ever, enumerating paths between two en-
tities is very expensive, and existing ap-
proaches typically resort to approxima-
tion with a sampled subset. This problem
is particularly acute when text is jointly
modeled with KB relations and used to
provide direct evidence for facts men-
tioned in it. In this paper, we propose
the first exact dynamic programming al-
gorithm which enables efficient incorpo-
ration of all relation paths of bounded
length, while modeling both relation types
and intermediate nodes in the composi-
tional path representations. We conduct a
theoretical analysis of the efficiency gain
from the approach. Experiments on two
datasets show that it addresses representa-
tional limitations in prior approaches and
improves accuracy in KB completion.

1 Introduction

Intelligent applications benefit from structured
knowledge about the entities and relations in
their domains. For example, large-scale knowl-
edge bases (KB), such as Freebase (Bollacker et
al., 2008) or DBPedia (Auer et al., 2007), have
proven to be important resources for supporting
open-domain question answering (Berant et al.,
2013; Sun et al., 2015; Yih et al., 2015). In
biomedicine, KBs such as the Pathway Interaction
Database (NCI-PID) (Schaefer et al., 2009) are
crucial for understanding complex diseases such
as cancer and for advancing precision medicine.

∗This research was conducted during the author’s intern-
ship at Microsoft Research.

While these knowledge bases are often carefully
curated, they are far from complete. In non-static
domains, new facts become true or are discovered
at a fast pace, making the manual expansion of
knowledge bases impractical. Extracting relations
from a text corpus (Mintz et al., 2009; Surdeanu
et al., 2012; Poon et al., 2015) or inferring facts
from the relationships among known entities (Lao
and Cohen, 2010) are thus important approaches
for populating existing knowledge bases.

Originally proposed as an alternative statis-
tical relational learning method, the knowledge
base embedding approach has gained a signifi-
cant amount of attention, due to its simple predic-
tion time computation and strong empirical perfor-
mance (Nickel et al., 2011; Chang et al., 2014). In
this framework, entities and relations in a knowl-
edge base are represented in a continuous space,
such as vectors and matrices. Whether two enti-
ties have a previously unknown relationship can
be predicted by simple functions of their corre-
sponding vectors or matrices. Early work in this
direction focuses on exploring various kinds of
learning objectives and frameworks, but the model
is learned solely from known direct relationships
between two entities (e.g., father(barack,
sasha)) (Nickel et al., 2011; Socher et al., 2013;
Bordes et al., 2013; Chang et al., 2014; Yang et
al., 2015). In contrast, using multi-step relation
paths (e.g., husband(barack, michelle) ∧
mother(michelle, sasha) to train KB em-
beddings has been proposed very recently (Guu
et al., 2015; Garcia-Duran et al., 2015; Lin et al.,
2015; Neelakantan et al., 2015).

While using relation paths improves model per-
formance, it also poses a critical technical chal-
lenge. As the number of possible relation paths
between pairs of entities grows exponentially with
path length, the training complexity increases
sharply. Consequently, existing methods need
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to make approximations by sampling or pruning.
The problem is worsened when the input is aug-
mented with unlabeled text, which has been shown
to improve performance (Lao et al., 2012; Gard-
ner et al., 2013; Riedel et al., 2013; Gardner et
al., 2014; Toutanova and Chen, 2015). More-
over, none of the prior methods distinguish rela-
tion paths that differ in the intermediate nodes they
pass through (e.g., michelle in our example);
all represent paths as a sequence of relation types.

In this work, we aim to develop a KB comple-
tion model that can incorporate relation paths ef-
ficiently. We start from analyzing the procedures
in existing approaches, focusing on their time and
space complexity. Based on the observation that
compositional representations of relation paths are
in fact decomposable, we propose a novel dynamic
programming method that enables efficient model-
ing of all possible relation paths, while also repre-
senting both relation types and nodes on the paths.

We evaluated our approach on two datasets.
The first is from the domain of gene regulatory
networks. Apart from its obvious significance
in biomedicine, it offers an excellent testbed for
learning joint embedding of KBs and text, as it
features existing knowledge bases such as NCI-
PID and an even larger body of text that grows
rapidly (over one million new articles per year).
By modeling intermediate nodes on relation paths,
we improve the model by 3 points in mean aver-
age precision compared to previous work, while
also providing a more efficient algorithm. The sec-
ond dataset is based on a network derived from
WordNet and previously used in work on knowl-
edge base completion. On that dataset we demon-
strate the ability of the model to effectively handle
longer relation paths composed of a larger set of
knowledge base relation types, with smaller posi-
tive impact of modeling intermediate nodes.

2 Preliminaries

In this section, we first give a brief overview of
the knowledge base and text representation used in
this work. We then describe the task of knowledge
base completion more formally and introduce our
basic model setting and training objective.

Knowledge Base A knowledge base (KB) is
represented as a collection of subject-predicate-
object triples (s, r, t), where s and t are the sub-
ject and object entities from a set E , and r is the
predicate from a set R that denotes a relation-

Figure 1: A snapshot depicting the knowledge graph of a
gene regulatory network, augmented with gene family and
dependency path relations.

ship between s and t. For example, in a KB of
movie facts, we may find a triple (Han Solo,
character, Star Wars), indicating that “Han
Solo is a character in the Star Wars movie.”

Let (s, π, t) = (s, r1, e1, r2, e2 . . . , en−1, rn, t)
be a path in G with s/t as the start/end entities,
r1, . . . , rn as the relation edges and e1, . . . , en−1

as the intermediate entities.
In the domain of gene regulations, entities are

genes and directed edges represent regulations. At
the abstract level, there are two key relations, pos-
itive reg and negative reg, which signify that the
subject gene increases or decreases the activity
of the object gene, respectively. Figure 1 shows
a snapshot of a gene regulatory network. Genes
such as GRB2 and MAPK3 are denoted by the light
grey nodes. Regulations such as positive reg are
denoted by long edges pointing from subject to ob-
ject. In addition, some genes stem from a com-
mon evolutionary origin and share similar func-
tions. They form a “gene family”, such as the
MAPK family that includes MAPK1 and MAPK3.

To jointly embed text, we use sentences contain-
ing co-occurring gene pairs, such as “GRB2 was
involved in the activation of gene MAPK3...”, and
augment the above knowledge graph with depen-
dency paths between the gene mentions, following
the general approach of Riedel et al. (2013).

Task and Scoring Models The KB completion
task is to predict the existence of links (s, r, t) that
are not seen in the training knowledge base. More
specifically, we focus on ranking object and sub-
ject entities for given queries (s, r, ∗) and (∗, r, t).

The basic KB embedding models learn latent
vector/matrix representations for entities and rela-
tions, and score each possible triple using learned
parameters θ and a scoring function f(s, r, t|θ).
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Below, we describe two basic model variations
which we build on in the rest of the paper.

BILINEAR The BILINEAR model learns a
square matrix Wr ∈ Rd×d for each relation r ∈ R
and a vector xe ∈ Rd for each entity e ∈ E . The
scoring function of a relation triple (s, r, t) is de-
fined as:

f(s, r, t|θ) = x>s Wrxt. (1)

For a knowledge graph G with |E| = Ne and
|R| = Nr, the parameter size of the BILINEAR

model is O
(
d2
)
. The large number of parameters

make it prone to overfitting, which motivates its
diagonal approximation, BILINEAR-DIAG.

BILINEAR-DIAG The BILINEAR-DIAG model
restricts the relation representations to the class
of diagonal matrices. 1 In this case, the parame-
ter size is reduced to O

(
d
)
. Although we present

model variants in terms of the BILINEAR repre-
sentation, all experiments in this work are based
on the BILINEAR-DIAG special case.

All models are trained using the same loss
function, which maximizes the probability of cor-
rect subject/object fillers of a given set of triples
with relations or relation paths. The probabil-
ity is defined by a log-linear model normalized
over a set of negative samples: P (t|s, π; θ) =

ef(s,π,t|θ)∑
t′∈Neg(s,π,∗)∪{t} ef(s,π,t

′|θ) . The probability of

subject entities is defined analogously.
Define the loss for a given training

triple L(s, π, t|θ) = − logP (t|s, π; θ) −
logP (s|t, π; θ). The overall loss function is
the sum of losses over all triples, with an L2

regularization term.

L(θ) =
∑
i

L(si, πi, ti; θ) + λ‖θ‖2 (2)

3 Relation-path-aware Models

We first review two existing methods using vec-
tor space relation paths modeling for KB comple-
tion in §3.1. We then introduce our new algorithm
that can efficiently take into account all relation
paths between two nodes as features and simul-
taneously model intermediate nodes on relation

1The downside of this approximation is that it enforces
symmetry in every relation, i.e., f(s, r, t) = (xs ◦xt)>wr =
(xt ◦ xs)>wr = f(t, r, s). However, empirically it has been
shown to outperform the Bilinear model when the number of
training examples is small (Yang et al., 2015).

paths in §3.2. We present a detailed theoretical
comparison of the efficiency of these three types
of methods in §3.3.

3.1 Prior Approaches
The two approaches we consider here are: using
relation paths to generate new auxiliary triples for
training (Guu et al., 2015) and using relation paths
as features for scoring (Lin et al., 2015).

Both approaches take into account embeddings
of relation paths between entities, and both of
them used vector space compositions to combine
the embeddings of individual relation links ri into
an embedding of the path π. The intermediate
nodes ei are neglected. The natural composition
function of a BILINEAR model is matrix multipli-
cation (Guu et al., 2015). For this model, the em-
bedding of a length-n path Φπ ∈ Rd×d is defined
as the matrix product of the sequence of relation
matrices for the relations in π.

Φπ = Wr1 . . .Wrn . (3)

For the BILINEAR-DIAG model, all the matri-
ces are diagonal and the computation reduces to
coordinate-wise product of vectors in Rd.

3.1.1 Relation Paths as a Compositional
Regularizer

In Guu et al. (2015), information from relation
paths was used to generate additional auxiliary
terms in training, which serve to provide a com-
positional regularizer for the learned node and re-
lation embeddings. A more limited version of
the same method was simultaneously proposed in
Garcia-Duran et al. (2015).

The method works as follows: starting from
each node in the knowledge base, it samples m
random walks of length 2 to a maximum length L,
resulting in a list of samples {[si, πi, ti]}. si and
ti are the start and end nodes of the random walk,
respectively, and πi consists of a sequence of inter-
mediate edges and nodes. Each of these samples
is used to define a new triple used in the training
loss function (eq. 2).

The score of each triple under a BILINEAR

composition model is defined as f(si, πi, ti|θ) =
xtsiΦπixti , where Φπi is the product of matrices
for relation link types in the path (eq. 3).

3.1.2 PRUNED-PATHS: Relation Paths as
Compositional Features

Instead of using relation paths to augment the set
of training triples, Lin et al. (2015) proposed to
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use paths (s, π, t) to define the scoring function
f(s, r, t|θ,Πs,t). Here Πs,t denotes the sum of the
embeddings of a set of paths π between the two
nodes in the graph, weighted by path-constrained
random walk probabilities. Their implementation
built on the TransE (Bordes et al., 2013) embed-
ding model; in comparison, we formulate a similar
model using the BILINEAR model.

We refer to such an approach as the PRUNED-
PATHS model, for it discards paths with weights
below a certain threshold. We define the model
under a BILINEAR composition as follows: Let
{π1, π2, . . . , πK} denote a fixed set of path types
that can be used as a source of features for the
model. We abuse notation slightly to refer to a
sequence of types of relation links r1, r2, . . . , rn
in a path in G as π. We denote by P (t|s, π)
the path-constrained random walk probability of
reaching node t starting from node s and follow-
ing sequences of relation types as specified in π.
We define the weighted path representationF (s, t)
for a node pair as the weighted sum of the repre-
sentations of paths π in the set {π1, π2, . . . , πK}
that have non-zero path-constrained random walk
probabilities. The representation is defined as:
F (s, t) =

∑
π w|π|P (t|s, π)Φ(π), where Φ(π) is

the path relation type representation from (eq. 3).
The weights w|π| provide a shared parameter for
paths of each length, so that the model may
learn to trust the contribution of paths of differ-
ent lengths differentially. The dependence on θ
and the set of paths Πs,t between the two nodes in
the graph was dropped for simplicity. Figure 2 il-
lustrates the weighted path representation between
nodes GRB2 and MAPK3 from Figure 1. 2

Using the above definition, the score of a candi-
date triple f(s, r, t|θ,Πs,t) is defined as:

f(s, r, t) = x>s Wrxt + vec(F (s, t))>vec(Wr) (4)

The first term of the scoring function is the same as
that of the BILINEAR model, and the second term
takes into account the similarity of the weighted
path representations for (s, t) and the predicted
relation r. Here we use element-wise product of
the two matrices as the similarity metric. Training
and scoring under this model requires explicit con-
structions of paths, and computing and storing the

2Unlike this illustration, the representations of depen-
dency paths are not decomposed into representations of in-
dividual edges in our implementation.

Figure 2: An illustration of the weighted sum of path repre-
sentations for paths connecting GRB2 and MAPK3 from Fig-
ure 1.The prefix “ ” of a relation type indicates an inverse
relation. The path-constrained random walk probabilities for
P1, P2 and P3 are 0.3, 0.4 and 0.05 respectively, and 0.0 for
the rest. The path length weights are omitted.

random walk probabilities P (t|s, π), which makes
it expensive to scale. In the next section, we in-
troduce an algorithm that can efficiently take into
account all paths connecting two nodes, and natu-
rally extend it to model the impact of intermediate
nodes on the informativeness of the paths.

3.2 ALL-PATHS: A Novel Representation
and Algorithm

We now introduce a novel algorithm for efficiently
computing and learning the scoring function from
(eq. 4), while summing over the set of all paths π
up to a certain lengthL, and additionally modeling
the impact of intermediate nodes on the represen-
tations Φ(π) of paths. Depending on the character-
istics of the knowledge graph and the dimensional-
ity of the learned embedding representations, this
method in addition to being more exact, can be
faster and take less memory than a method that
explicitly generates and prunes full relation paths.

We first define a new representation function
for paths of the form (s, π, t) = (s, r1, e1, r2, e2
. . . , en−1, rn, t), which has as a special case the
relation-type based function used in prior work,
but can additionally model the impact of interme-
diate nodes ej on the path representation.

We introduce new parameters wei which
can impact the representations of paths passing
through nodes ei. wei is a scalar weight in our
implementation, but vectors of dimensionality d
could also be implemented using the same general
approach. The embedding of the sample path π
under a BILINEAR model is defined as: Φπ =
Wr1 tanh(we1) · · ·Wrn tanh(wen).

Here the weight of each node is first trans-
formed into the range [−1, 1] using a non-linear
tanh function. To derive our exact algorithm, we
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use quantities Fl(s, t) denoting the weighted sum
of path representations for all paths of length l be-
tween nodes s and t. The weighted sum of path
representations F (s, t) can be written as:∑

l=1...L

wlFl(s, t), (5)

where Fl(s, t) =
∑

π∈Pl(s,t) p(s|t, π)Φπ and
Pl(s, t) denotes all paths of length l between s, t.

Computing F (s, t) in the naive way by enumer-
ating all possible (s, t) paths is impractical since
the number of possible paths can be very large, es-
pecially in graphs containing text. Therefore prior
work selected a subset of paths through sampling
and pruning (Neelakantan et al., 2015; Lin et al.,
2015). However, the properties of the BILINEAR

composition function for path representation en-
able us to incrementally build the sums of all path
representations exactly, using dynamic program-
ming. Algorithm 1 shows how to compute the nec-
essary quantities Fl(s, t) for all entity pairs in G. 3

Algorithm 1 Compute the sum of path represen-
tations (up to length L) for every entity pair (s, t).
Input : G = (E ,R), {Wr|r ∈ R}, list of all entity pairs

EP = {(s, t)}.
Output : FL(s, t) for every (s, t) ∈ EP .
Initialize:
for (s, t) ∈ EP do

ifR(s, t) 6= ∅ then
F1(s, t)←∑

r∈R(s,t) tanh(wt)p(t|s, r)Wr(s,t)

else
F1(s, t)← 0

end
end
for l = 2, . . . , L do

for (s, t) ∈ EP do
Fl(s, t)← 0
for e ∈ ν(s) do

Fl(s, t)← Fl(s, t) + F1(s, e)Fl−1(e, t)
end

end
end

The key to this solution is that the representa-
tions of the longer paths are composed of those of
the shorter paths and that the random walk proba-
bilities of relation paths are products of transition
probabilities over individual relation edges. The
sub-components of paths frequently overlap. For
example, all paths π depicted in Figure 2 share the
same tail edge family. The algorithms from prior

3We further speed up the computation by pre-computing,
for each node s, the set of notes t reachable via paths of length
l. Then we iterate over non-zero entries only, instead of all
pairs in the loops.

work perform a sum over product representations
of paths, but it is more efficient to regroup these
into a product of sums. This regrouping allows
taking into account exponentially many possible
paths without explicitly enumerating them and in-
dividually computing their path-constrained ran-
dom walk probabilities.

After all quantities Fl(s, t) are computed, their
weighted sum F (s, t) can be computed using
O
(
dL
)

operations for each entity pair. These can
directly be used to compute the scores of all posi-
tive and negative triples for training, using (eq. 4).
As we can see, no explicit enumeration or storage
of multi-step relation paths between pairs of nodes
is needed. To compute gradients of the loss func-
tion with respect to individual model parameters,
we use a similar algorithm to compute the error for
each intermediate edge (ei, r′, ej) for each group
of length l paths between s and t. The algorithm is
a variant of forward-backward, corresponding to
the forward Algorithm 1.

Notice that directly adding node representations
for the paths in the PRUNED-PATHS approach
would be infeasible since it would lead to an ex-
position in the possible path types and therefore
the memory and running time requirements of the
model. Thus the use of an adaptation of our dy-
namic programming algorithm to the task of sum-
ming over node sequences for a given path type
would become necessary to augment the paramet-
ric family of the PRUNED-PATHS approach with
node representations.

3.3 Efficiency Analysis

We perform a worst-case analysis of the time and
memory required for training and evaluation for
each of the introduced methods. For the models
taking into account relation paths, we assume that
all paths up to a certain length L will be modeled4.
For the basic model text is not taken into account
in training, since modeling text and KB relations
uniformly in this model did not help performance
as seen in the Experiments section. We only take
text into account as a source of relation path fea-
tures or auxiliary path facts.

Notation Let Ne denote the number of nodes in
the knowledge graph, Ekb the number of knowl-

4If only a subset of paths is used, the complexity of the
methods other than ALL-PATHS will be reduced. However, in
order to compare the methods in a similar setting, we analyze
performance in the case of modeling all multi-step paths.
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edge graph links/triples, Etxt the number of tex-
tual links/triples, a the average number of outgo-
ing links for a node in the graph given the outgo-
ing relation type, Nr the number of distinct rela-
tions in the graph, η the number of negative triples
for each training triple, and d the dimensionality
of entity embeddings and (diagional) matrix rep-
resentations of relations.

BILINEAR-DIAG In this basic model, the train-
ing time is O

(
2d(η + 1)Ekb

)
and memory is

O
(
dNe + dNr

)
. The memory required is for stor-

ing embeddings of entities and relations, and the
time is for scoring 2(η + 1) triples for every fact
in the training KB.

Guu et al. (2015) This method generates train-
ing path triples {(x, π, y)} for all entity pairs con-
nected by paths π up to length L. The number of
such triples5 is T = Ekb +Etxt +

∑
l=2...LNr

l ×
Ne × al. The memory required is the memory to
store all triples and the set of relation paths, which
is O

(T +
∑

l=2...L lNr
l
)
. The time required in-

cludes the time to compute the scores and gradi-
ents for all triples and their negative examples (for
subject and object position), as well as to com-
pute the compositional path representations of all
path types. The time to compute compositional
path representations is O

(
d
∑

l=2...L lNr
l
)

and the
time spent per triple is 2d(η + 1) as in the ba-
sic model. Therefore the overall time per itera-
tion is O

(
2d(η + 1)T )+O

(
d
∑

l=2...L lNr
l
)
. The

test time and memory requirements of this method
are the same as these of BILINEAR-DIAG, which
is a substantial advantage over other methods, if
evaluation-time efficiency is important.

PRUNED-PATHS This method computes and
stores the values of the random walk probabili-
ties for all pairs of nodes and relation paths, for
which these probabilities are non-zero. This can
be done in time O

(T ) where Triples is the same
quantity used in the analysis of Guu et al. (2015).
The memory requirements of this method are the
same as these of (Guu et al., 2015), up to a con-
stant to store random-walk probabilities for paths.

The time requirements are different, however.
At training time, we compute scores and up-
date gradients for triples corresponding to direct

5The computation uses the fact that the number of path
type sequences of length l is N l

r . We use a, the average
branching factor of nodes given relation types, to derive the
estimated number of triples of a given relation type for a path
of length l.

knowledge base edges, whose number is Ekb.
For each considered triple, however, we need
to compute the sum of representations of path
features that are active for the triple. We es-
timate the average number of active paths per
node pair as T

Ne2
. Therefore the overall time for

this method per training iteration is O
(
2d(η +

1)Ekb TNe2
)
+O
(
d
∑

l=2...L lNr
l
)
.

We should note that whether this method or
the one of Guu et al. (2015) will be faster in
training depends on whether the average number
of paths per node pair multiplied by Ekb is big-
ger or smaller than the total number of triples
T . Unlike the method of Guu et al. (2015), the
evaluation-time memory requirements of this ap-
proach are the same as its training memory re-
quirements, or they could be reduced slightly to
match the evaluation-time memory requirements
of ALL-PATHS, if these are lower as determined
by the specific problem instance.

ALL-PATHS This method does not explicitly
construct or store fully constructed paths (s, π, t).
Instead, memory and time is determined by the
dynamic program in Algorithm 1, as well as the
forward-backward algorithm for computation of
gradients. The memory required to store path
representation sums Fl(s, t) is O

(
dLNe

2
)

in the
worst case. Denote E = Ekb + Etxt. The time
to compute these sums is O

(
dE(1 +

∑
l=2...L(l−

1)Ne)
)
. After this computation, the time to com-

pute the scores of training positive and negative
triples is O

(
d2(η + 1)EkbL

)
. The time to in-

crement gradients using each triple considered in
training is O

(
dEL2

)
. The evaluation time mem-

ory is reduced relative to training time memory by
a factor of L and the evaluation time per triple
can also be reduced by a factor of L using pre-
computation.

Based on this analysis, we computed train-
ing time and memory estimates for our NCI+Txt
knowledge base. Given the values of the quanti-
ties from our knowledge graph and d = 50, η =
50, and maximum path length of 5, the estimated
memory for (Guu et al., 2015) and PRUNED-
PATHS is 4.0×1018 and for ALL-PATHS the mem-
ory is 1.9×109. The time estimates are 2.4×1021,
2.6 × 1025, and 7.3 × 1015 for (Guu et al., 2015),
PRUNED-PATHS, and ALL-PATHS, respectively.
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Model KB KB and Text
MAP HITS@10 MAP HITS@10

BILINEAR-DIAG (Guu et al., 2015) d=100 12.48 19.66 12.48 19.66
BILINEAR-DIAG d=100 28.56 39.92 28.56 39.92
BILINEAR-DIAG d=2000 30.16 42.51 30.16 42.51
+Guu et al. (2015) d=100 orig. 23.20 34.84 23.20 34.84
+Guu et al. (2015) d=100 reimpl. 29.13 40.59 30.25 41.45
PRUNED-PATHS d=100 c=1000 32.31 43.16 36.42 48.22
PRUNED-PATHS d=100 c=100 32.31 43.16 36.79 48.27
PRUNED-PATHS d=100 c=1 32.31 43.16 37.03 48.26
ALL-PATHS d=100 32.31 43.16 36.24 48.60
ALL-PATHS+NODES d=100 33.92 45.96 39.31 52.53

Table 1: KB completion results on NCI-PID test: comparison of our compositional learning approach
(ALL-PATHS+NODES) with baseline systems. d is the embedding dimension; sampled paths occurring
less than c times were pruned in PRUNED-PATHS.

4 Experiments

Our experiments are designed to study three re-
search questions: (i) What is the impact of using
path representations as a source of compositional
regularization as in (Guu et al., 2015) versus using
them as features for scoring as in PRUNED-PATHS

and ALL-PATHS? (ii) What is the impact of us-
ing textual mentions for KB completion in differ-
ent models? (iii) Does modeling intermediate path
nodes improve the accuracy of KB completion?

Datasets We used two datasets for evaluation:
NCI-PID and WordNet.

For the first set of experiments, we used the
Pathway Interaction Database (NCI-PID) (Schae-
fer et al., 2009) as our knowledge base, which
was created by editors from the Nature Publish-
ing Groups, in collaboration with the National
Cancer Institute. It contains a collection of high-
quality gene regulatory networks (also referred to
as pathways). The original networks are in the
form of hypergraphs, where nodes could be com-
plex gene products (e.g., “protein complex” with
multiple proteins bound together) and regulations
could have multiple inputs and outputs. Follow-
ing the convention of most network modeling ap-
proaches, we simplified the hypergraphs into bi-
nary regulations between genes (e.g., GRB2 posi-
tive reg MAPK3), which yields a graph with 2774
genes and 14323 triples. The triples are then split
into train, dev, and test sets, of size 10224, 1315,
2784, respectively. We identified genes belonging
to the same family via the common letter prefix in
their names, which adds 1936 triples to training.

As a second dataset, we used a WordNet KB
with the same train, dev, and test splits as Guu et

al. (2015). There are 38,696 entities and 11 types
of knowledge base relations. The KB includes
112,581 triples for training, 2,606 triples for val-
idation, and 10,544 triples for testing. WordNet
does not contain textual relations and is used for a
more direct comparison with recent works.

Textual Relations We used PubMed abstracts
for text for NCI-PID. We used the gene men-
tions identified by Literome (Poon et al., 2014),
and considered sentences with co-occurring gene
pairs from NCI-PID. We defined textual relations
using the fully lexicalized dependency paths be-
tween two gene mentions, as proposed in Riedel et
al. (2013). Additionally, we define trigger-mapped
dependency paths, where only important “trigger”
words are lexicalized and the rest of the words are
replaced with a wild-card character X. A set of
333 words often associated with regulation events
in Literome (e.g. induce, inhibit, reduce, sup-
press) were used as trigger words. To avoid in-
troducing too much noise, we only included tex-
tual relations that occur at least 5 times between
mentions of two genes that have a KB relation.
This resulted in 3,827 distinct textual relations and
1,244,186 mentions.6 The number of textual rela-
tions is much larger than that of KB relations, and
it helped induce much larger connectivity among
genes (390,338 pairs of genes are directly con-
nected in text versus 12,100 pairs in KB).

Systems ALL-PATHS denotes our compositional
learning approach that sums over all paths using

6Modeling such a large number of textual relations intro-
duces sparsity, which necessitates models such as (Toutanova
et al., 2015; Verga et al., 2015) to derive composed represen-
tations of text. We leave integration with such methods for
future work.
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dynamic programming; ALL-PATHS+NODES ad-
ditionally models nodes in the paths. PRUNED-
PATHS denotes the traditional approach that learns
from sampled paths detailed in §3.1.2; paths with
occurrence less than a cutoff are pruned (c = 1 in
Table 1 means that all sampled paths are used).
The most relevant prior approach is Guu et al.
(2015). We ran experiments using both their pub-
licly available code and our re-implementation.
We also included the BILINEAR-DIAG baseline.

Implementation Details We used batch training
with RProp (Riedmiller and Braun, 1993). The L2

penalty λ was set to 0.1 for all models, and the
entity vectors xe were normalized to unit vectors.
For each positive example we sample 500 nega-
tive examples. For our implementation of (Guu et
al., 2015), we run 5 random walks of each length
starting from each node and we found that adding
a weight β to the multi-step path triples improves
the results. After preliminary experimentation, we
fixed β to 0.1. Models using KB and textual rela-
tions were initialized from models using KB rela-
tions only7. Model training was stopped when the
development set MAP did not improve for 40 it-
erations; the parameters with the best MAP on the
development set were selected as output. Finally,
we used only paths of length up to 3 for NCI-PID
and up to length 5 for WordNet.8

Evaluation metrics We evaluate our models
on their ability to predict the subjects/objects of
knowledge base triples in the test set. Since the re-
lationships in the gene regulation network are fre-
quently not one-to-one, we use the mean average
precision (MAP) measure instead of the mean re-
ciprocal rank often used in knowledge base com-
pletion works in other domains. In addition to
MAP, we use Hits@10, which is the percentage
of correct arguments ranked among the top 10
predictions9. We compute measures for ranking
both the object entities (s, r, ∗) and the subject
entities(∗, r, t). We report evaluation metrics com-
puted on the union of the two query set.

7In addition, models using path training were initialized
from models trained on direct relation links only.

8Using paths up to length 4 on NCI-PID did not perform
better.

9As a common practice in KB completion evaluation, for
both MAP and Hits@10, we filtered out the other correct an-
swers when ranking a particular triple to eliminate ranking
penalization induced by other correct predictions.

NCI-PID Results Table 1 summarizes the
knowledge base (KB) completion results on the
NCI-PID test. The rows compare our compo-
sitional learning approach ALL-PATHS+NODES

with prior approaches. The comparison of the
two columns demonstrates the impact when text
is jointly embedded with KB. Our compositional
learning approach significantly outperforms all
other approaches in both evaluation metrics (MAP
and HITS@10). Moreover, jointly embedding
text and KB led to substantial improvement, com-
pared to embedding KB only.10 Finally, modeling
nodes in the paths offers significant gains (ALL-
PATHS+NODE gains 3 points in MAP over ALL-
PATHS), with statistical significance (p < .001)
according to a McNemar test.

Evaluating the effect of path pruning on the tra-
ditional approach (PRUNED-PATHS) is quite illu-
minating. As the number of KB relations is rela-
tively small in this domain, when only KB is em-
bedded, most paths occur frequently. So there is
little difference between the heaviest pruned ver-
sion (c=1000) and the lightest (c=1). When textual
relations are included, the cutoff matters more, al-
though the difference was small as many rarer tex-
tual relations were already filtered beforehand. In
either case, the accuracy difference between ALL-
PATHS and PRUNED-PATHS is small, and ALL-
PATHS mainly gains in efficiency. However, when
nodes are modeled, the compositional learning ap-
proach gains in accuracy as well, especially when
text is jointly embedded.

Comparison among the baselines also offers
valuable insights. The implementation of Guu
et al. (2015) with default parameters performed
significantly worse than our re-implementation.
Also, our re-implementation achieves only a slight
gain over the BILINEAR-DIAG baseline, whereas
the original implementation obtains substantial
improvement over its own version of BILINEAR-
DIAG. These results underscore the importance
of hyper-parameters and optimization, and invite
future systematic research on the impact of such
modeling choices.11

10Text did not help for the models in the first four rows in
the Table, possibly because in these approaches text and KB
information are equally weighted in the loss function and the
more numerous textual triples dominate the KB ones.

11The differences between our two implementations are:
max-margin loss versus softmax loss and stochastic gradient
training versus batch training.
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Model MAP HITS@10
BILINEAR-DIAG (Guu et al., 2015) N/A 12.9
BILINEAR-DIAG 8.0 12.2
+Guu et al. (2015) N/A 14.4
PRUNED-PATHS l = 3 c=10 9.5 14.8
PRUNED-PATHS l = 3 c=1 9.5 14.9
PRUNED-PATHS l = 5 c=10 8.9 14.4
ALL-PATHS l = 3 9.4 14.7
ALL-PATHS+NODES l=3 9.4 15.2
ALL-PATHS l = 5 9.6 16.6
ALL-PATHS+NODES l=5 9.8 16.7

Table 2: KB completion results on the WordNet
test set: comparison of our compositional learn-
ing approach (ALL-PATHS) with baseline systems.
The maximum length of paths is denoted by l.
Sampled paths occurring less than c times were
pruned in PRUNED-PATHS.

WordNet Results Table 2 presents a compar-
ative evaluation on the WordNet dataset. This
dataset has a larger number of knowledge base
relation types compared to NCI-PID, and longer
relation paths in this KB are expected to be ben-
eficial. Guu et al. (2015) evaluated their com-
positional regularization approach on this dataset
and we can directly compare to their results. The
first two rows in the Table show the baseline
BILINEAR-DIAG model results according to the
results reported in (Guu et al., 2015) and our im-
plementation. The MAP results were not reported
in Guu et al. (2015); hence the NA value for MAP
in row one.12 On this dataset, our implementation
of the baseline model does not have substantially
different results than Guu et al. (2015) and we use
their reported results for the baseline and compo-
sitionally trained model.

Compositional training improved performance
in Hits@10 from 12.9 to 14.4 in Guu et al. (2015),
and we find that using PRUNED-PATHS as features
gives similar, but a bit higher performance gains.

The PRUNED-PATHS method is evaluated using
count cutoffs of 1 and 10, and maximum path
lengths of 3 and 5. As can be seen, lower count
cutoff performed better for paths up to length 3,
but we could not run the method with path lengths
up to 5 and count cutoff of 1, due to excessive
memory requirements (more than 248GB). When
using count cutoff of 10, paths up to length 5 per-
formed worse than paths up to length 3. This
performance degradation could be avoided with

12We ran the trained model distributed by Guu et al. (2015)
and obtained a much lower Hits@10 value of 6.4 and MAP of
of 3.5. Due to the discrepancy, we report the original results
from the authors’ paper which lack MAP values instead.

a staged training regiment where models with
shorter paths are first trained and used to initial-
ize models using longer paths.

The performance of the ALL-PATHS method
can be seen for maximum paths up to lengths 3
and 5, and with or without using features on inter-
mediate path nodes.13 As shown in Table 2, longer
paths were useful, and features on intermediate
nodes were also beneficial. We tested the signif-
icance of the differences between several pairs of
models and found that nodes led to significant im-
provement (p < .002) for paths of length up to 3,
but not for the setting with longer paths. All mod-
els using path features are significantly better than
the baseline BILINEAR-DIAG model.

To summarize both sets of experiments, the
ALL-PATHS approach allows us to efficiently in-
clude information from long KB relation paths
as in WordNet, or paths including both text and
KB relations as in NCI-PID. Our dynamic pro-
gramming algorithm considers relation paths ef-
ficiently, and is also straightforwardly general-
izable to include modeling of intermediate path
nodes, which would not be directly possible for
the PRUNED-PATHS approach. Using intermedi-
ate nodes was beneficial on both datasets, and es-
pecially when paths could include textual relations
as in the NCI-PID dataset.

5 Conclusions

In this work, we propose the first approach to ef-
ficiently incorporate all relation paths of bounded
length in a knowledge base, while modeling both
relations and intermediate nodes in the composi-
tional path representations. Experimental results
on two datasets show that it outperforms prior ap-
proaches by modeling intermediate path nodes. In
the future, we would like to study the impact of
relation paths for additional basic KB embedding
models and knowledge domains.
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